SECTION A (50 Marks)

1.	Consider the ten nur	mbers: 1, 5, 8, 19, 47,	51, 111, 216,	999, 1000.	
	Write down				
	(a) the composit	te numbers,			
	(b) the perfect c	ubes.			
	Ans: (a)		,	, ,	[2]
	(b)			- Hotelson	[2]
2.	Find the value of ³ √	13824 by using prime	factorisation.		

Ans: _____ [3]

3. If p and q are whole numbers such that $p \times q = 37$, find the value of p + q and explain your answer.

Ans: p+q =_____[1]

Explain: [2]

- 4. (a) Determine whether the statement "If 2 and 4 are factors of a number, then 8 is also a factor of that number" is true or false.
 - (b) If it is true, explain your reasoning. If it is false, give a counterexample.

Ans: (a) The above statement is _____. [1]

(b) ______[1]

5. Consider the eight numbers: $(-0.5)^2$, 0, $\sqrt[3]{-9}$, $\frac{18}{5}$, $\sqrt{100}$, $(-4)^3$, 17, $-\frac{24}{3}$.

Write down

- (a) the positive numbers,
- (b) the integers.

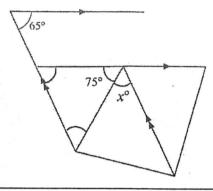
Ans: (a) [2]

(b) [2]

- 6. (a) Showing your working, express 100×0.57 as a repeating decimal.
 - (b) Hence, find the value of $100 \times 0.57 0.57$.

- Ans: (a) _____ [2]
 - (b) _____[2]
- 7. Factorise the algebraic expression 4a 8(b 2c) completely.

Ans: ______[2]

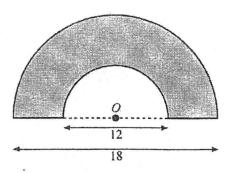

- 8. (a) If $z = -3^x y^3$, find the value of z when x = 2 and y = -3.
 - (b) Simplify $(-2a) \times (-3b) + 5ba 7a + 4b \times (-a) a$.

Ans: (a)
$$z =$$
 [2]

4

9. Solve the equation $\frac{2x+1}{x-3} = 2\frac{1}{3}$.

10. Explain clearly in the space provided why x = 40 in the figure below. Show your working and reasoning clearly.


[3]

11. If the sum of the interior angles of a decagon (10-sided) is greater than the sum of the interior angles of another regular polygon by 540°, find the number of sides of the polygon.

- 12. An object moves 7.2 km in 1 hour. Find its speed in
 - (a) metres per minute,
 - (b) centimetres per second.

- Ans: (a) _____ m/min [2]
 - (b) _____ cm/s [2]
- 13. (a) Solve the inequality 8x 11x > -9.
 - (b) Illustrate the above solutions on a number line.
 - - Ans: (a) [2]

- 14. The diagram shows two semicircles with the same centre O. Measurements are in metres. Find, in terms of π ,
 - (a) the perimeter of the shaded region,
 - (b) the area of the shaded region.

- Ans: (a) ____ m [2]
 - **(b)** _____ m² [2]

- 15. Tasnim earns \$85 on selling 80 tins of biscuits. If Tasnim bought 100 tins of biscuits for \$425, calculate
 - (a) the cost of one tin of biscuits that Tasnim paid,
 - (b) the profits of one tin of biscuits as a percentage of its cost.

Ans:	(a)	\$ [1] -

SECTION B (50 Marks)

 Ms Lim has 200 g of red plasticine, 380 g of grey plasticine and 420 g of yellow plasticine. She divided the plasticine into small balls of equal mass for her Art lesson.

Find

- (a) the largest possible mass of one small ball of plasticine,
- (b) the number of plasticine balls she obtained for each colour.

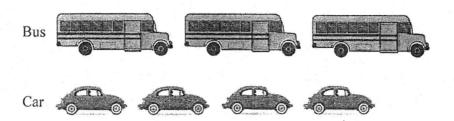
Ans:	(a)	-	g	[3]
	(b)	<u>.</u>	red balls	[1]
			grey balls	[1]
			_ yellow balls	

(a) Construct ΔABC such that AB = 5.5 cm, BC = 10 cm and AC = 5.5 cm. [2]
(b) Construct the perpendicular bisector of AC. [1]
(c) Construct the angle bisector of ∠CAB. [1]

(d) Qi Yun, Erni, Kwan Pin and Zeti share a sum of money. Qi Yun takes $\frac{1}{5}$ of the sum of money. After Qi Yun has taken her share, Erni takes $\frac{1}{3}$ of the remaining money. After Erni has taken her share, Kwan Pin takes $\frac{1}{4}$ of the remaining money. After Kwan Pin has taken her share, Zeti takes all of the remaining money. What fraction of the sum of money is Zeti's share?

Ans:	(d)		[4]
	(~)	ANALYSIS OF THE PROPERTY OF TH	1.4

3. (a) The marks scored by a class of 20 students in a Mathematics test are as follows:

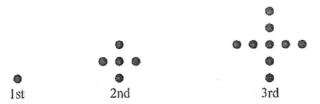

49	46	69	61	49
50	45	62	57	69
68	60	49	. 59	57.
68	45	55	46	50

Copy and complete the frequency table below.

[2]

Marks (x)	Tally	Frequency
$45 \le x < 50$		
$50 \le x < 55$		
$55 \le x < 60$		VH (HH)
60 ≤ <i>x</i> < 65	The second secon	
$65 \le x < 70$		

(b) Mei Xuan conducted a survey among a group of students who travel to school either by bus or by car. She displayed the data collected with a pictogram shown below.



what is a possible misintepretation of the above data and how would you modify the above pictogram to avoid emisinterpretation?

Ans:		
λ		 I
		[0]
-		121

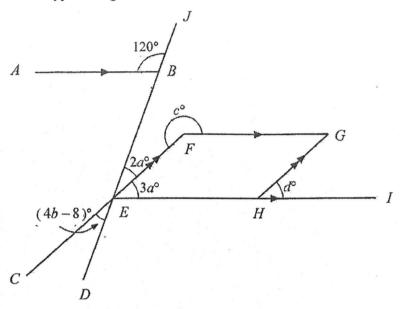
4.	Mave drove for a distance of 135 km at a speed of x km/h and Charm distance of 120 km at a speed 10 km/h slower than Mave. Given that		
	by the both of them are the same, find the speed each of them drove a		
	Ans: Mave:	km/h	
	Charmaine:	km/h	[5]

5. The diagram below shows the first three of a sequence of dot patterns.

(a) The information from the sequence of dots is tabulated below.

Complete the table.

Pattern	Formula	Number of dots
1	1	1
2	4+1	5
3	4+4+1	9
4	<u> </u>	

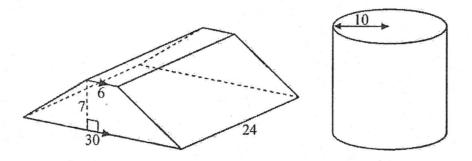

- (b) Write down a formula, T_n to calculate the number of dots in the nth pattern.
- (c) Hence, find the number of dots in the 25th pattern.
- (d) Find the value of m if there are 501 dots in the mth pattern.

Ans: (b)
$$T_n =$$
 [2]

(d)
$$m =$$
 [2]

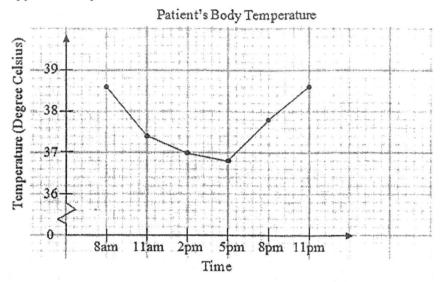
[1]

- 6. (a) Find the values of a, b, c and d in the figure below.
 - (b) What type of angle is c° ?



$$b = \underline{\hspace{1cm}} [2]$$

$$c = \underline{\qquad} [2]$$


$$d = \underline{\hspace{1cm}} [1]$$

- 7. A solid prism whose cross section is a trapezium is moulded into a solid cylinder of radius 10 cm. All dimensions given in the diagram are in centimetres.
 - (a) Find the height of the cylinder, giving your answer correct to 3 significant figures.
 - (b) Find the total surface area of the cylinder, giving your answer correct to the nearest whole number.

Ans:	(a)		-	cm	[4]

8. The line graph below shows the change in body temperature of a patient from 8 am to 11 pm. The temperatures are taken every 3 hours. The normal temperature of a person is approximately 37°C.

- (a) State the time taken (in hours) for his temperature to decline till it reaches normal temperature.
- (b) State a possible reason for the drop in the patient's temperature.

Ans:	. , -	7.		

- Find the percentage increase in temperature from 5pm to 8pm. (d)
- Do you think the patient has recovered by 11 pm? Explain your answer. (e)

-END OF PAPER-----

SETTER: Ms Chow CW

[2]

SECTION A (50 Marks)

- 1. Consider the ten numbers: 1, 5, 8, 19, 47, 51, 111, 216, 999, 1000. Write down
 - (a) the composite numbers,
 - (b) the perfect cubes.

2. Find the value of $\sqrt[3]{13824}$ by using prime factorisation.

$$13824 = 2^{9} \times 3^{3}$$
 [MI]
 $\sqrt[3]{13824} = \sqrt[3]{2^{9} \times 3^{3}}$
 $= 2^{3} \times 3^{1}$ [MI]
 $= 24$.

Ans: 24. [3] A

3. If p and q are whole numbers such that $p \times q = 37$, find the value of p+q and explain your answer.

$$P \times 9 = 37$$

 $1 \times 37 = 37$
 $\therefore P + 9 = 1 + 37$
 $= 38$

Ans:
$$p+q=38$$
. [1] A|

Explain: Since 37 is a prime number, it only has [2]

two factors > 1 and 37 itself. [BI].

- 4. (a) Determine whether the statement "If 2 and 4 are factors of a number, then 8 is also a factor of that number" is true or false.
 - (b) If it is true, explain your reasoning. If it is false, give a counterexample.
 - Ans: (a) The above statement is false. [1] B
 - (b) If 4 is the number, 8 cannot be a [1] B| factor of 4.
- 5. Consider the eight numbers: $(-0.5)^2$, 0, $\sqrt[3]{-9}$, $\frac{18}{5}$, $\sqrt{100}$, $(-4)^3$, 17, $-\frac{24}{3}$. Write down
 - (a) the positive numbers,
 - (b) the integers.

* Deduct one mark Ans: (a)
$$(-0.5)^2$$
, $\frac{18}{5}$, $\sqrt{100}$, 17 . [2] B2 for every error. (b) 0 , $\sqrt{100}$, $(-4)^3$, 17 , $-\frac{24}{3}$ [2] B2

- 6. (a) Showing your working, express 100×0.57 as a repeating decimal.
 - (b) Hence, find the value of $100 \times 0.57 0.57$.

(A)
$$100 \times 0.57 = 100 \times 0.575757$$
 [MI] (A) 100×0.57 = $100 \times \frac{19}{33}$ [MI] = 57.5757 = 57.5757 = 57.5757 = 57.57

(b)
$$100 \times 0.57 - 0.57$$

= $57.57 - 0.57$ [MI]
= 57
(b) 57 [2] Al
(c) 57 [2] Al

7. Factorise the algebraic expression 4a - 8(b - 2c) completely.

$$4a - 8(b-2c)$$

= $4a - 8b + 1bc$ [MI]
= $4(a-2b+4c)$

- (a) If $z = -3^x y^3$, find the value of z when x = 2 and y = -3.
- (b) Simplify $(-2a) \times (-3b) + 5ba 7a + 4b \times (-a) a$.

(a)
$$Z = -3^{2} - 4^{3}$$

 $= -3^{2} - (-3)^{3}$ [MI]
 $= -9 - (-27)$
 $= -9 + 27$
 $= 18$

(b)
$$(-2a) \times (-3b) + 5ba - 7a + 4b \times (-a) - a$$

= $6ab + 5ba - 7a + (-4ab) - a$ [Mi].
= $6ab - 4ab + 5ba - 7a - a$
= $7ab - 8a$.

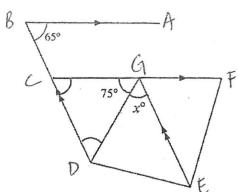
Ans: (a)
$$z = 18$$
. [2] A|
(b) $7ab - 8a$. [2] A|

9. Solve the equation
$$\frac{2x+1}{x-3} = 2\frac{1}{3}$$
.

$$\frac{2x+1}{x-3} = \frac{7}{3}.$$

$$\frac{3(2x+1)}{3(x-3)} = \frac{7(x-3)}{3(x-3)}$$
either step can get [MI].

$$3(2x+1) = 7(x-3)$$


$$6x + 3 = 7x - 21$$

$$6x-7x=-2|-3.CMI].$$

$$-\chi = -24$$

Ans:
$$x = 24$$
 [3] A

10. Explain clearly in the space provided why x = 40 in the figure below. Show your working and reasoning clearly.

$$2D(9 = 65^{\circ} (corr \ 4s, AB | | FC) [MI]$$

$$2(D9 = 180^{\circ} - 65^{\circ} - 75^{\circ} (csum \ of \ \Delta) [MI]$$

$$= 40^{\circ}$$

$$2x = 40^{\circ} (csum \ 4s, cti | 9E) [AI]$$

$$\therefore x = 40$$
[3]

11. If the sum of the interior angles of a decagon (10-sided) is greater than the sum of the interior angles of another regular polygon by 540°, find the number of sides of the polygon.

Sum of Int
$$4s$$
 of decagon $(n-2) \times 180^\circ = 900^\circ \text{ [MI]}$

$$= (10-2) \times 180^\circ \text{ [MI]}$$

$$= 1440^\circ$$

$$= 5.$$
Sum of int $4s$ of another polygon
$$= 1440^\circ - 540^\circ$$
Ans: No. of sides = $\frac{7}{4}$ [3] A|
$$= 900^\circ$$

- 12. An object moves 7.2 km in 1 hour. Find its speed in
 - (a) metres per minute,
 - (b) centimetres per second.
- (A) 1 hour = 7-2 km.

 60 mins = 7200 m [MI]

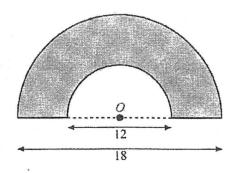
 1 min = 7200 ÷60

 = 120m.
- - Ans: (a) /20 m/min [2] A|

5

- 13. (a) Solve the inequality 8x 11x > -9.
 - Solve the inequality 8x 11x > -9.

 Illustrate the above solutions on a number line. $\begin{array}{c}
 -3x & 7 9 \\
 & \times & -1 3
 \end{array}$ $\times & \times & -9 + (-3)$


[1] ||3|

x < 3.

* ECF Siven for Correct number Ans: (a) X<3 [2] A line.

(b)

- The diagram shows two semicircles with the same centre O. Measurements are in metres. 14. Find, in terms of π ,
 - the perimeter of the shaded region, (a)
 - (b) the area of the shaded region.

(a) Circumference of big semicircle

$$= \pi(9)$$

Circumference of small semicircle 7. get [MI].

$$= \pi(b)$$

$$= 6\pi$$
.

: Perimeter =
$$9\pi + 6\pi + 3 + 3$$

= $15\pi + 6$.

(b) Area of big semicircle

$$= \pm \times \pi \times (9)^2$$

either Step Area of small semicircle

(b)
$$22.5 \text{ T} \text{ m}^2$$

- 15. Tasnim earns \$85 on selling 80 tins of biscuits. If Tasnim bought 100 tins of biscuits for \$425, calculate
 - (a) the cost of one tin of biscuits that Tasnim paid,
 - (b) the profits of one tin of biscuits as a percentage of its cost.
 - (a) $100 + \sin s = \$425$. $1 + \sin s = \$425 + 100$ = \$4.25.
 - (b) $80 + \sin s = 85 . $1 + \sin = $85 + 80$ [MI]. = \$1.0625.

$$\frac{\text{earning}}{\text{cost}} \times \frac{100\%}{\text{cost}} = \frac{1-0625}{4\cdot25} \times \frac{100\%}{\text{cmj}}.$$

$$= 25\%.$$

- Ans: (a) \$ 4.25. [1] A)
 - (b) <u>25.</u> % [3] A

TION B (50 Marks)

 Ms Lim has 200 g of red plasticine, 380 g of grey plasticine and 420 g of yellow plasticine. She divided the plasticine into small balls of equal mass for her Art lesson.

Find

- (a) the largest possible mass of one small ball of plasticine,
- (b) the number of plasticine balls she obtained for each colour.

(a)
$$200 = 2^{3} \times 5^{2}$$

 $380 = 2^{1} \times 5 \times 19$.
 $420 = 2^{1} \times 3 \times 5 \times 7$
 $400 = 2^{1} \times 3 \times 5 \times 7$
 $100 = 2^{1} \times 3 \times 5 \times 7$
 $100 = 2^{1} \times 3 \times 5 \times 7$
 $100 = 2^{1} \times 3 \times 5 \times 7$
 $100 = 2^{1} \times 3 \times 5 \times 7$
 $100 = 2^{1} \times 3 \times 5 \times 7$

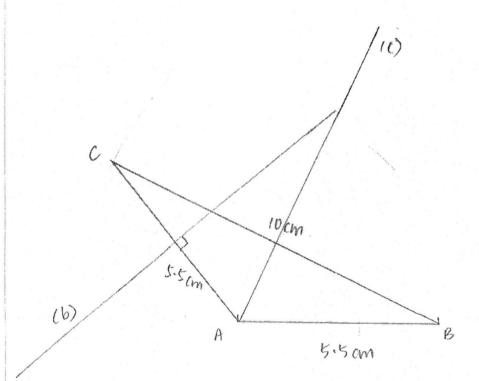
(b) Red =
$$200 \div 20$$

= 10 .

Grey =
$$380 \div 20$$
= 19.

Ans: (a) 20 g [3] A|

(b) 10 red balls [1] A|


Yellow = $420 \div 20$
= 2|

yellow balls [1] A|

- 2. (a) Construct $\triangle ABC$ such that AB = 5.5 cm, BC = 10 cm and AC = 5.5 cm. [2] 8.2
 - (b) Construct the perpendicular bisector of AC. [1] [1]
 - (c) Construct the angle bisector of $\angle CAB$.

[1] %

* labels and aves have to be present.

(d) Qi Yun, Erni, Kwan Pin and Zeti share a sum of money. Qi Yun takes $\frac{1}{5}$ of the sum of money. After Qi Yun has taken her share, Erni takes $\frac{1}{3}$ of the remaining money. After Erni has taken her share, Kwan Pin takes $\frac{1}{4}$ of the remaining money. After Kwan Pin has taken her share, Zeti takes all of the remaining money. What fraction of the sum of money is Zeti's share?

After Riyun,
$$1-\frac{1}{5}=\frac{4}{5}$$
.

 $trni=\frac{1}{3}\times\frac{4}{5}$ [MI].

 $=\frac{1}{4}$ 5.

After Evni= $\frac{1}{5}$ 6.

 $=\frac{1}{4}$ 7.

 $=\frac{1}{4}$ 7.

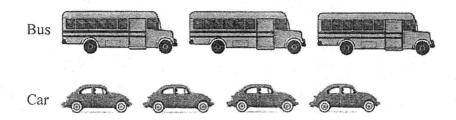
 $=\frac{1}{4}$ 8.

 $=\frac{1}{4}$ 9.

 $=\frac{1}{4}$

Ans: (d)
$$\frac{2}{5}$$

3. (a) The marks scored by a class of 20 students in a Mathematics test are as follows:


Copy and complete the frequency table below.

[2] BZ

Marks (x)	Tally	Frequency
$45 \le x < 50$	HH+ 11	7.
$50 \le x < 55$. //	2.
$55 \le x < 60$	1111	4.
$60 \le x < 65$	111	3.
$65 \le x < 70$	1111	4.

* Deduct one mark for every error.

(b) Mei Xuan conducted a survey among a group of students who travel to school either by bus or by car. She displayed the data collected with a pictogram shown below.

what is a possible misinterpretation of the above data and how would you modify the above pictogram to avoid a misinterpretation?

Ans: I will make the bus and car to be of the

Same size [BI]

[2]

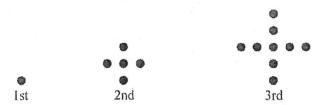
4. Mave drove for a distance of 135 km at a speed of x km/h and Charmaine drove for a distance of 120 km at a speed 10 km/h slower than Mave. Given that the time taken by the both of them are the same, find the speed each of them drove at.

Time taken by Mave =
$$\frac{135}{x}$$
.

Time taken by Charmaine = $\frac{120}{x-10}$.

[MI]

$$\frac{135}{x} = \frac{120}{x-10}$$
 [MI].


$$\frac{135(x-10)}{x(x-10)} = \frac{120 \times x}{x(x-10)}$$

$$\frac{135(x-10)}{x(x-10)} = \frac{120 \times x}{x(x-10)}$$
either step can get [MI].

$$1352 - 1702 = 1350$$

$$X-10 = 90-10$$

= 80 [AI].

5. The diagram below shows the first three of a sequence of dot patterns.

(a) The information from the sequence of dots is tabulated below.Complete the table.

	22 1
111	16. 1
111	E/ 1

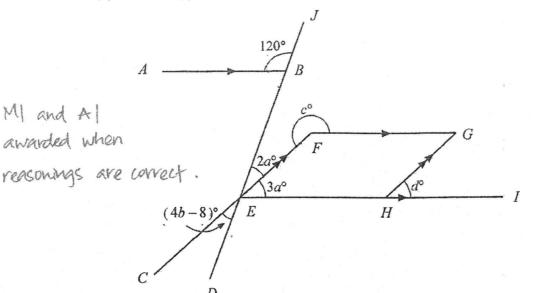
Pattern	Formula	Number of dots
1	1	1
2	4+1	. 5
3	4+4+1	9
4	4+4+4+1	13 .

- (b) Write down a formula, T_n to calculate the number of dots in the nth pattern.
- (c) Hence, find the number of dots in the 25th pattern.
- (d) Find the value of m if there are 501 dots in the mth pattern.

(b)
$$T_2 = 4 \times 1 + 1$$

 $T_3 = 4 \times 2 + 1$
 $T_4 = 4 \times 3 + 1$
 $T_n = 4 \times (n-1) + 1 \text{ EMIJ}$
 $= 4n-4+1$
 $= 4n-3$.

(d)
$$T_m = 4(m)-3$$
.
 $501 = 4m-3$. [MI]
 $4m = 501+3$
 $= 504$
 $m = 126$.


(c)
$$T_{25} = 4(25) - 3$$

= 97.

Ans: (b)
$$T_n = \frac{4n-3}{97}$$
 [2] Al / B2

(d)
$$m = 126$$
 [2] A

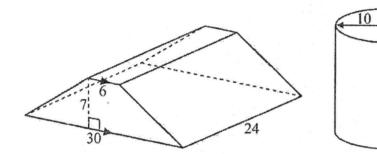
- Find the values of a, b, c and d in the figure below. 6. (a)
 - What type of angle is c° ? (b)

* MI and AI

(a)
$$\angle ABE = 180^{\circ} - 120^{\circ} (adj \not = son str. line)[MI] d^{\circ} = 3a^{\circ} (corr \not = s, EF//H9)$$

 $= 60^{\circ} = 3(12)^{\circ}$
 $= 36^{\circ}$.
 $2a^{\circ} + 3a^{\circ} = 60^{\circ} (alf \not = s, AB//EI)$.
 $5a^{\circ} = 60^{\circ}$

$$a = 12$$
Ans: (a) $a = 12$
 $4b - 8 = 2a (vertopp 4s) . [M]$
 $b = 8$
 $[2] A |$
 $4b - 8 = 2(12)$


$$= 32.$$
(b) Reflex angle [1] [6]

$$\angle EFG = 180^{\circ} - 3a^{\circ} (int xs, EH//FG) EMIJ$$

$$= 180^{\circ} - 3(12)^{\circ} \qquad c^{\circ} = 360^{\circ} - 144^{\circ} (4s \text{ at a point}) \qquad (8)$$

$$= 144^{\circ}$$

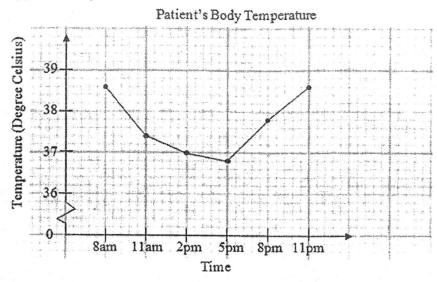
- 7. A solid prism whose cross section is a trapezium is moulded into a solid cylinder of radius 10 cm. All dimensions given in the diagram are in centimetres.
 - (a) Find the height of the cylinder, giving your answer correct to 3 significant figures.
 - (b) Find the total surface area of the cylinder, giving your answer correct to the nearest whole number.

(a) Avea of trapezium =
$$\pm (a+b)(h)$$

= $\pm (6+30)(7)$ [MI]
= 126 cm^2

Area of circle =
$$TT(10)^2$$

= $314.16cm^2$


Vol of cylinder = BA
$$\times$$
 Height
 $3024 = 314.16 \times H$ EMI]
 $H = 9.6257$
= $9.63 \text{ cm } (35f)$

(b) Perimeter of base =
$$2\pi(10)$$

= 62.832 .
 $SA = (62.832 \times 9.6257) + 2(314.16)$

$$= |233|2$$

= $|233 \text{ cm}^2|$

Ans: (a)
$$\frac{9.63}{}$$
 cm [4]

8. The line graph below shows the change in body temperature of a patient from 8 am to 11 pm. The temperatures are taken every 3 hours. The normal temperature of a person is approximately 37°C.

- (a) State the time taken (in hours) for his temperature to decline till it reaches normal temperature.
- (b) State a possible reason for the drop in the patient's temperature.

- (d) Find the percentage increase in temperature from 5pm to 8pm.
- (e) Do you think the patient has recovered by 11 pm? Explain your answer.

 [BI]

 Ans: NO. His temperature went up to 38-6°C. [2]

(d) Percentage =
$$\frac{37.8 - 36.8}{36.8} \times \frac{100\%}{100\%}$$
 [MI]

Increase $\frac{1}{36.8} \times \frac{100\%}{100\%}$ (d) $\frac{6.}{2.72} \%$ [21 A]

= $\frac{1}{36.8} \times \frac{100\%}{100\%}$ (3 S.f.).

-----END OF PAPER-----

SETTER: Ms Chow CW